国产午夜福利片1000无码丨人妻国产成人久久av免费高清丨午夜做受视频试看6次丨日韩av不卡一区在线免费观看丨在线观看精品三级欧美

Your Good Partner in Biology Research

CD20:狂奔中的“戰(zhàn)馬”,新型藥研發(fā)從未停歇!

日期:2022-11-15 15:07:45


近期,CD20靶向療法在自身免疫疾病領(lǐng)域取得顯著突破。羅氏第三代CD20單抗Gazyva(奧妥珠單抗)火力全開:10月獲FDA批準(zhǔn)用于狼瘡性腎炎(LN),成為該領(lǐng)域首款CD20靶向療法;隨后在特發(fā)性腎病綜合征的INShore試驗(yàn)中展現(xiàn)優(yōu)勢(shì),并于11月宣布系統(tǒng)性紅斑狼瘡(SLE)的3期研究達(dá)到主要終點(diǎn)。Gazyva通過高效清除B細(xì)胞、半年一次的給藥頻率以及良好安全性,正從腫瘤治療向自免領(lǐng)域快速拓展,驗(yàn)證了成熟靶點(diǎn)在跨疾病應(yīng)用中的持續(xù)潛力。


1. 什么是CD20?

CD20是位于B細(xì)胞上的一種非糖基化磷蛋白,主要在前B細(xì)胞到成熟B細(xì)胞階段表達(dá)。CD20分子屬疏水、4次跨膜蛋白,由297個(gè)氨基酸殘基組成,相對(duì)分子質(zhì)量(Mr)約為33×103。CD20的表達(dá)在不同的B細(xì)胞惡性腫瘤之間是高度可變的 [2-3]。CD20的分子功能與B細(xì)胞受體(BCR)的信號(hào)傳導(dǎo)傾向有關(guān)。CD20被證明與B細(xì)胞上的其他多種表面蛋白(如CD40、CD53、CD81CD82)相互作用。有研究表明,一些表觀遺傳因子(EZH2、HDAC1/2、HDAC6、Sin3A-HDAC1復(fù)合物)和轉(zhuǎn)錄因子(USF、OCT1/2、PU.1PiP、ELK1、ETS1、SP1NFκB、FOXO1、SMAD2/3)也可調(diào)節(jié)CD20的表達(dá) [4-6]。大量研究已證實(shí)CD20是人類B淋巴細(xì)胞表面特異性分子標(biāo)記物,對(duì)B淋巴細(xì)胞的增殖和分化具有調(diào)節(jié)作用。絕大部分的B淋巴細(xì)胞瘤都有CD20的表達(dá),CD20分子易與抗體結(jié)合,且結(jié)合后不易脫落、不內(nèi)化,成為治療B細(xì)胞淋巴瘤的理想靶抗原。目前,抗CD20單克隆抗體是治療B細(xì)胞淋巴瘤(B-cell non-Hodgkin’s lymphoma)的重要靶向藥(圖1[4]

抗CD20單克隆抗體是治療BCL的重要靶向藥

圖1. 抗CD20單克隆抗體是治療BCL的重要靶向藥 [4]


2. CD20相關(guān)的調(diào)節(jié)機(jī)制

2.1 CD20與B細(xì)胞抗原受體

CD20在B淋巴細(xì)胞表面以寡聚體形式存在,現(xiàn)有實(shí)驗(yàn)證明CD20在B細(xì)胞表面形成的是四聚體。CD20與B細(xì)胞抗原受體(B cell antigen receptor,BCR)的膜型IgM(sIgM)存在相互作用已被被證實(shí),B細(xì)胞活化后,BCR-CD20復(fù)合物會(huì)解離,磷蛋白、鈣調(diào)素結(jié)合蛋白會(huì)暫時(shí)被招募到CD20,從而參與胞內(nèi)信號(hào)的傳導(dǎo) [2-4]

2.2 CD20與鈣離子信號(hào)傳導(dǎo)

鈣離子流動(dòng)對(duì)細(xì)胞的生物學(xué)功能有重要影響。鈣池可調(diào)控鈣離子進(jìn)人(store-operated calcium entry,SOCE),主要是通過鈣離子釋放激活鈣離子(calcium-release-activatedcalcium,CRAC)通道來提高細(xì)胞內(nèi)的鈣離子濃度,是淋巴細(xì)胞提高胞內(nèi)鈣離子濃度的主要方式。越來越多的證據(jù)表明CD20參與了SOCE,CD20對(duì)于胞內(nèi)鈣離子濃度有重要的調(diào)節(jié)作用,而SOCE所引起鈣離子流的強(qiáng)度和持續(xù)時(shí)間,將影響受體與抗原結(jié)合后細(xì)胞的功能 [6-8]

2.3 抗CD20單抗與B細(xì)胞淋巴瘤

抗CD20單克隆抗體可以殺死B細(xì)胞來源的腫瘤,大量證據(jù)表明,抗CD20單克隆抗體與三種作用機(jī)制有關(guān),即抗體依賴性細(xì)胞毒性(ADCC)、補(bǔ)體依賴性細(xì)胞毒性(CDC)和抗體與CD20分子結(jié)合引起的直接效應(yīng),包括抑制細(xì)胞生長、改變細(xì)胞周期和細(xì)胞凋亡。ADCC是指涂有抗CD20的B細(xì)胞通過一種基于細(xì)胞的機(jī)制被殺死。CDC是指補(bǔ)體膜攻擊復(fù)合物在細(xì)胞表面組裝起來。除在正常B細(xì)胞中表達(dá)外,CD20還在B細(xì)胞來源的淋巴瘤、白血病等的腫瘤細(xì)胞表達(dá),以及涉及免疫疾病和炎癥疾病的B細(xì)胞中表達(dá),所以,CD20抗原成為淋巴癌、白血病和某些自體免疫等疾病治療的目標(biāo)靶點(diǎn) (圖2[3, 9-12]

抗CD20單抗抗腫瘤調(diào)節(jié)作用

圖2. 抗CD20單抗抗腫瘤調(diào)節(jié)作用 [3]


3. 靶向CD20的治療方式有哪些?

靶向CD20的治療的藥物,主要有三種形式,抗CD20單克隆抗體、CAR-T和雙特異性抗體。眾多已上市和在研的生物制劑集中在CD20單克隆抗體。根據(jù)人源化程度以及Fc片段修飾,抗CD20單抗可分為三代,其中第一代是以利妥昔單抗為代表的嵌合或者鼠源單抗,第二代是以奧法木單抗為代表的人源化單抗,第三代的抗CD20單抗以奧妥珠單抗為代表,其抗體的Fc片段經(jīng)過了糖基化修飾 [13-15]

第一代抗CD20治療性單克隆抗體藥利妥昔單抗,臨床多用于聯(lián)合治療,特別是難治愈和復(fù)發(fā)性的淋巴瘤,常用的聯(lián)合用藥方式是R-CHOP,即利妥昔單抗、環(huán)磷酰胺、阿霉素、長春新堿、和潑尼松聯(lián)合使用;第二代抗CD20單抗包括Ofatumumab、Veltuzumab和Ocrelizumab等,降低了第一代抗體的免疫原性,如Ofatumumab能有效誘導(dǎo)利妥昔單抗抵抗的細(xì)胞和CD20低表達(dá)的惡性B細(xì)胞的補(bǔ)體依賴性細(xì)胞毒性;第三代單抗奧濱尤妥珠Obinutuzumab,通過糖基化修飾抗體Fc片段,增強(qiáng)靶點(diǎn)結(jié)合力,使得ADCC效應(yīng)增強(qiáng) [13-15]


4. 未來展望

CD20靶點(diǎn)的進(jìn)化遠(yuǎn)未止步。羅氏通過三代單抗(利妥昔、奧瑞利珠、奧妥珠)及雙抗技術(shù)(如CD20/CD3、CD20/TfR),持續(xù)挖掘其價(jià)值:在自免領(lǐng)域,Gazyva針對(duì)SLE、LN及膜性腎病的臨床研究逐步推進(jìn);雙抗平臺(tái)更將應(yīng)用延伸至阿爾茨海默癥等神經(jīng)系統(tǒng)疾病。結(jié)合羅氏近期引進(jìn)長效自免雙抗等動(dòng)向,其免疫管線已覆蓋COPD、哮喘、纖維化等多領(lǐng)域。未來,CD20靶點(diǎn)有望通過機(jī)制優(yōu)化與適應(yīng)癥拓展,成為連接腫瘤、自免及神經(jīng)疾病的核心橋梁,凸顯“深度耕耘成熟靶點(diǎn)”的創(chuàng)新價(jià)值。

為鼎力協(xié)助各藥企針對(duì)CD20在淋巴癌、白血病和某些自體免疫等疾病治療領(lǐng)域上的研發(fā),CUSABIO現(xiàn)有CD20活性蛋白產(chǎn)品(Code:CSB-MP015007HU),助力您在CD20機(jī)制方面的研究或其潛在臨床價(jià)值的探索(點(diǎn)擊查看CD20全系列產(chǎn)品)。


CD20 (MS4A1) 抗體

CSB-RA015007A1HU ELISA

MS4A1 Monoclonal Antibody
(CSB-RA015007A1HU)

CSB-RA015007MA3HU ELISA

MS4A1 Monoclonal Antibody
(CSB-RA015007MA3HU)

CSB-RA015007MA3HU ELISA

MS4A1 Monoclonal Antibody
(CSB-RA015007MA3HU)

CSB-PA015007LA01MO WB

MS4A1 Antibody
(CSB-PA015007LA01MO)

CSB-PA001433 WB

MS4A1 Antibody
(CSB-PA001433)

CSB-PA001433 WB

MS4A1 Antibody
(CSB-PA006161)

CSB-PA015007DSR2HU IHC

MS4A1 Antibody
(CSB-PA015007DSR2HU)

CSB-PA015007DSR2HU IHC

MS4A1 Antibody
(CSB-PA015007DSR2HU)

CSB-MA000204 IHC

MS4A1 Monoclonal Antibody
(CSB-MA000204)


參考文獻(xiàn):

[1] Shi, Yuankai, et al. "Comparison of efficacy and safety of ripertamab (SCT400) versus rituximab (Mabthera?) in combination with CHOP in patients with previously untreated CD20‐positive diffuse large B‐cell lymphoma: A randomized, single‐blind, phase III clinical trial." Hematological Oncology (2022).

[2] Wu, Xin, et al. "The Efficacy and Safety of Anti-CD20 Antibody Treatments in Relapsing Multiple Sclerosis: A Systematic Review and Network Meta-analysis." CNS drugs (2022): 1-16.

[3] Schilhabel, Anke, et al. "CD20 Expression as a Possible Novel Prognostic Marker in CLL: Application of EuroFlow Standardization Technique and Normalization Procedures in Flow Cytometric Expression Analysis." Cancers 14.19 (2022): 4917.

[4] Pavlasova, Gabriela, and Marek Mraz. "The regulation and function of CD20: an “enigma” of B-cell biology and targeted therapy." Haematologica 105.6 (2020): 1494.

[5] Shree, Tanaya, et al. "CD20-targeted therapy ablates de novo antibody response to vaccination but spares preestablished immunity." Blood cancer discovery 3.2 (2022): 95-102.

[6] Cree, Bruce AC. "All anti-CD20 monoclonal antibodies have similar efficacy and safety risks: Yes." Multiple Sclerosis Journal 28.12 (2022): 1843-1844.

[7] Schuster, Stephen J., et al. "Characterization of CD20 expression loss as a mechanism of resistance to mosunetuzumab in patients with relapsed/refractory B-cell non-Hodgkin lymphomas." (2022): 7526-7526.

[8] Walshe, Claire A., et al. "Induction of cytosolic calcium flux by CD20 is dependent upon B Cell antigen receptor signaling." Journal of Biological Chemistry 283.25 (2008): 16971-16984.

[9] Liu, Jinny L., et al. "Selection and characterization of single domain antibodies against human CD20." Molecular Immunology 78 (2016): 146-154.

[10] Schneider, Dina, et al. "Trispecific CD19-CD20-CD22–targeting duoCAR-T cells eliminate antigen-heterogeneous B cell tumors in preclinical models." Science Translational Medicine 13.586 (2021): eabc6401.

[11] Grandjean, Capucine L., et al. "Imaging the mechanisms of anti-CD20 therapy in vivo uncovers spatiotemporal bottlenecks in antibody-dependent phagocytosis." Science Advances 7.8 (2021): eabd6167.

[12] Pozzo, Federico, et al. "SF3B1-mutated chronic lymphocytic leukemia shows evidence of NOTCH1 pathway activation including CD20 downregulation." haematologica 106.12 (2021): 3125.

[13] Goldenberg, David M., and Robert M. Sharkey. "Sacituzumab govitecan, a novel, third-generation, antibody-drug conjugate (ADC) for cancer therapy." Expert Opinion on Biological Therapy 20.8 (2020): 871-885.

[14] Asano, Teizo, et al. "Epitope mapping of an anti-CD20 monoclonal antibody (C20Mab-60) using the HisMAP method." Monoclonal antibodies in immunodiagnosis and immunotherapy 40.6 (2021): 243-249.

[15] Luo, Chengxin, et al. "Efficacy and safety of new anti-CD20 monoclonal antibodies versus rituximab for induction therapy of CD20+ B-cell non-Hodgkin lymphomas: A systematic review and meta-analysis." Scientific reports 11.1 (2021): 1-14.