国产午夜福利片1000无码丨人妻国产成人久久av免费高清丨午夜做受视频试看6次丨日韩av不卡一区在线免费观看丨在线观看精品三级欧美

Your Good Partner in Biology Research

CD69:淋巴細(xì)胞活化最早表達(dá)的分子,作為多向性調(diào)控者參與血液和自身免疫疾病!

日期:2023-05-24 09:51:03

近日,《Theranostics》雜志在線發(fā)表了題為HSF1 promotes CD69+Treg differentiation to inhibit colitis progression的研究論文 [1]。研究發(fā)現(xiàn),CD69在維持Treg免疫抑制功能中起重要作用,Treg中敲低CD69容易誘發(fā)炎癥性腸病等自身免疫性疾病。此外,HSF1通過(guò)激活CD69轉(zhuǎn)錄促進(jìn)CD69+Tregs分化,這對(duì)Tregs的免疫抑制功能至關(guān)重要。尤其是對(duì)于治療自身免疫性疾病的患者來(lái)說(shuō),通過(guò)增加CD69+Treg的數(shù)量將有望緩解疾病癥狀,改善病情進(jìn)展。

CD69作為淋巴細(xì)胞活化最早表達(dá)的分子,也就是當(dāng)免疫系統(tǒng)激活時(shí),CD69成為最早的信號(hào),調(diào)節(jié)T細(xì)胞、B細(xì)胞、自然殺傷細(xì)胞等多種免疫細(xì)胞的功能,因此,CD69被認(rèn)為是一種多向性調(diào)控者,在免疫系統(tǒng)中發(fā)揮著重要的作用。越來(lái)越多的研究表明,CD69在血液和免疫疾病中發(fā)揮重要的調(diào)節(jié)作用。那么,CD69更多的生物學(xué)功能是怎樣的?它在免疫調(diào)節(jié)中的機(jī)制是如何?帶著疑問(wèn),讓我們?nèi)ヒ黄鹆私馓剿鳌?/p>


1. 什么是CD69?

1.1 CD69的結(jié)構(gòu)

CD69(又稱AIM,EA-1,Leu23和MLR-3)是淋巴細(xì)胞活化最早表達(dá)的膜表面分子。人CD69是由199個(gè)氨基酸組成的完整的II型跨膜糖蛋白 [2],包括40個(gè)殘基的細(xì)胞內(nèi)區(qū),21個(gè)殘基的跨膜區(qū)和138個(gè)殘基的細(xì)胞外區(qū)。細(xì)胞外區(qū)有C-型凝集素(Ca2+依賴性糖基識(shí)別區(qū)域(CRD)),CD69亦屬于C-型凝集素受體家族 [3-4]。細(xì)胞內(nèi)的末端Ser/Thr通常被磷酸化,CD69與CD23、CD72有相同性 [3-4]。CD69又屬于NK細(xì)胞特異的遺傳因子復(fù)合體,不同的是,NKR-P1、Ly-49與NKG2分子只表達(dá)在NK細(xì)胞上,而CD69可在多種細(xì)胞上表達(dá),說(shuō)明CD69有多種特性 (圖1[2]。

CD69結(jié)構(gòu)示意圖

圖1. CD69結(jié)構(gòu)示意圖 [2]

1.2 CD69的表達(dá)及功能

CD69是淋巴細(xì)胞激活后最早表達(dá)的表面抗原,后來(lái)發(fā)現(xiàn)經(jīng)誘導(dǎo)后它幾乎可在所有的血細(xì)胞上表達(dá)。CD69可誘導(dǎo)表達(dá)在T細(xì)胞、B細(xì)胞、NK細(xì)胞、單核細(xì)胞、中性和嗜酸性粒細(xì)胞、胸腺細(xì)胞等。CD69這種僅在細(xì)胞活化后表達(dá)的特性,使其成為細(xì)胞活化的標(biāo)記分子。例如,T細(xì)胞活化標(biāo)志分子,具有代表性的:IL-2受體CD25、轉(zhuǎn)鐵蛋白受體CD71、CD69,而CD69是表達(dá)最早的分子 [5-7]

CD69也可作為細(xì)胞共刺激信號(hào),如CD69+T細(xì)胞伴隨IL-12β、IL-18α和IL-16β mRNA水平增高,并在重組IL-12或IL-18的作用下,促進(jìn)干擾素-γ(interferon-γ,IFN-γ)的產(chǎn)生。近年研究揭示CD69在促進(jìn)細(xì)胞活化的同時(shí),還可能與細(xì)胞的凋亡密切相關(guān) [8-9]。雖然CD69的配體還未明確,有研究提示CD69可能與Galectin-1(Gal-1)結(jié)合調(diào)控Th17(圖2[8]??傊?,CD69交聯(lián)可產(chǎn)生細(xì)胞內(nèi)信號(hào)傳導(dǎo)及多種免疫反應(yīng),對(duì)造血細(xì)胞的生物學(xué)功能有廣泛的作用。

CD69結(jié)構(gòu)示意圖

圖2. CD69可能與Galectin-1(Gal-1)結(jié)合調(diào)控Th17 [8]


2. CD69在細(xì)胞活化和凋亡中的雙向免疫調(diào)節(jié)機(jī)制

CD69是一個(gè)多向性的免疫調(diào)節(jié)分子,對(duì)多種造血細(xì)胞的活化和分化具有重要作用。CD69自被發(fā)現(xiàn)后,初始研究基本上是關(guān)于CD69在細(xì)胞活化中的作用。近年來(lái)發(fā)現(xiàn),CD69在T細(xì)胞凋亡中亦有重要作用。CD69介導(dǎo)細(xì)胞活化和細(xì)胞凋亡的分子機(jī)制仍不明確。

2.1 CD69和細(xì)胞活化

靜止?fàn)顟B(tài)的T細(xì)胞不表達(dá)CD69,但當(dāng)T細(xì)胞受抗CD3/TCR(T cell receptor,TCR)、CD2、CD28、蛋白激酶C(PKC)的激活物PMA、PHA等刺激活化后可誘導(dǎo)性表達(dá)CD69。

在CD69介導(dǎo)的T細(xì)胞活化中CD3/TCR復(fù)合體是必要的(圖3[10]。PMA通過(guò)激活GTP連接和Ras蛋白參與了細(xì)胞內(nèi)的信號(hào)傳遞,這對(duì)于T細(xì)胞上CD69的表達(dá)起到了核心作用。

CD69介導(dǎo)的T細(xì)胞活化中CD3/TCR復(fù)合體是必要的

圖3. CD69介導(dǎo)的T細(xì)胞活化中CD3/TCR復(fù)合體是必要的 [10]

NK細(xì)胞在靜止?fàn)顟B(tài)也不表達(dá)CD69,當(dāng)IL-2、IL-7IL-12、IFNA、PMA和CD16交聯(lián)可使NK細(xì)胞活化,誘導(dǎo)CD69的表達(dá) [10-11]。多種不同信號(hào)轉(zhuǎn)導(dǎo)中的蛋白激酶 C(protein kinase C,PKC)和蛋白酪氨酸激酶(protein tyrosine kinase,PTK)參與其中 [10-11]。CD69啟動(dòng)的NK細(xì)胞細(xì)胞毒活性受CD94的調(diào)節(jié) [12];另有報(bào)道CD69能活化細(xì)胞外信號(hào)調(diào)節(jié)激酶ERK,而CD69啟動(dòng)的ERK活化受CD94/NKG2-A抑制性受體的負(fù)調(diào)節(jié) [13]

對(duì)脾臟和淋巴結(jié)中的B細(xì)胞,脂多糖(Lipopolysaccharide,LPS)可誘導(dǎo)其CD69分子表達(dá);對(duì)外周血液中嗜酸性粒細(xì)胞EOS,體外IL-2、IL-3、IL-5、IL-13、GM-CSF、IFN-γ可誘導(dǎo)CD69表達(dá) [14-15]。

2.2 CD69和細(xì)胞凋亡

CD69在體內(nèi)與細(xì)胞的凋亡密切相關(guān)。在體內(nèi)活化的具有CD69高表達(dá)的T細(xì)胞,在體外易于快速自發(fā)凋亡。與死亡受體CD95相比,CD69介導(dǎo)的凋亡有其自己的特點(diǎn)。CD95介導(dǎo)的凋亡幾乎涉及所有細(xì)胞類型,而明確可由CD69介導(dǎo)的凋亡細(xì)胞為T細(xì)胞、活化的嗜酸性粒細(xì)胞EOS和單核細(xì)胞。

研究提示CD69介導(dǎo)的單核細(xì)胞凋亡與3個(gè)不同的信號(hào)通路相關(guān):1)依賴于NO;2)與磷脂酶A2/磷脂氧化酶級(jí)聯(lián)反應(yīng)相關(guān);3)受百日咳毒素(PTX)敏感的G蛋白影響;4)CD69介導(dǎo)TGF-β合成 [16]

Caspase是一類在細(xì)胞凋亡過(guò)程中起關(guān)鍵作用的分子。EOL-1株EOS在CD45、CD45R、CD45RB、CD95、CD69單抗培養(yǎng)后,凋亡增加,caspase-8caspase-9抑制劑可抑制單抗誘導(dǎo)的凋亡;CD69交聯(lián)可誘導(dǎo)caspase-3、caspase-8激活??笴D69單抗可誘導(dǎo)EOS凋亡及bcl-2表達(dá)下降,但在粒細(xì)胞-巨噬細(xì)胞集落刺激因子GM-CSF存在,胞內(nèi)bcl-2濃度不變時(shí),CD69單抗可誘導(dǎo)GM-CSF培養(yǎng)的CD69+細(xì)胞凋亡,bcl-2表達(dá)下降,提示CD69誘導(dǎo)的凋亡與bcl-2依賴的信號(hào)轉(zhuǎn)導(dǎo)有關(guān) [17]。

成熟T細(xì)胞活化誘導(dǎo)凋亡機(jī)制可能是FAS,研究發(fā)現(xiàn),體內(nèi)激活的具有CD69高表達(dá)的扁桃腺T細(xì)胞體外易于自發(fā)性和快速凋亡,細(xì)胞趨化因子CXCL12/SDF-1、TIL16、IL17、IL12、IL15等可抑制凋亡;磷酸酰肌醇3激酶(PI3K)抑制劑可加速凋亡,提示體內(nèi)激活CD69+T細(xì)胞有內(nèi)源性的凋亡敏感性的增加,而其機(jī)制涉及多種外源信號(hào) [18]。


3. CD69在疾病中的作用

CD69作為T淋巴細(xì)胞激活后最早表達(dá)的表面分子,是T細(xì)胞介導(dǎo)的免疫應(yīng)答的重要組成。當(dāng)其表達(dá)之后,可通過(guò)提高Ca2+濃度、上調(diào)細(xì)胞內(nèi)TNF-α、IFN-γ等細(xì)胞因子的分泌以及IL-2及其受體的合成與表達(dá),并作為共刺激信號(hào)促進(jìn)T細(xì)胞進(jìn)一步活化和增殖?,F(xiàn)有研究表明,CD69對(duì)多種血細(xì)胞的激活、增殖和分化起重要作用,并與血液系統(tǒng)疾病及免疫相關(guān)性疾病的發(fā)病機(jī)理有關(guān)。

3.1 CD69和血液系統(tǒng)疾病

在多種血液系統(tǒng)惡性腫瘤(包括淋巴瘤、急性或慢性白血病、多發(fā)性骨髓瘤)外周血淋巴細(xì)胞亞群中發(fā)現(xiàn),CD4+和CD8+的T細(xì)胞上CD69、CD71等活化標(biāo)志分子表達(dá)明顯增加,說(shuō)明這類疾病存在T細(xì)胞激活。

急性髓系白血?。ǎˋcute myeloid leukemia,AML)起源于造血干細(xì)胞的異常增殖和分化。在AML中,白血病細(xì)胞不成熟并快速增殖,最終會(huì)取代正常造血組織,導(dǎo)致貧血、感染和出血等癥狀。在AML中,CD69表達(dá)率明顯降低。由于CD69的缺乏,一系列細(xì)胞因子,如IL2、TNF-α等分泌亦減低,難以形成效應(yīng)T細(xì)胞而產(chǎn)生免疫應(yīng)答。經(jīng)化療獲得完全緩解后,CD69表達(dá)率則明顯升高,表明AML患者存在T細(xì)胞活化受抑、免疫功能受損 [19]

慢性淋巴細(xì)胞白血病(Chronic Lymphocytic Leukemia,CLL)是一種以CD5+CD19+B淋巴細(xì)胞克隆性增殖為特征的惡性增生性疾病。在CLL中,用絲裂原體外刺激B細(xì)胞,發(fā)現(xiàn)CD69的表達(dá)與正常對(duì)照相似,但CD95的上調(diào)性表達(dá)受損。進(jìn)一步研究揭示CLL患者瘤細(xì)胞表達(dá)CD23,CD25,CD69,CD71等表面活化抗原,而CD69表達(dá)水平可能與CLL患者外周血淋巴細(xì)胞數(shù)目、更差的臨床分期等因素密切相關(guān) [20]

在骨髓增生異常綜合征(Myelodysplastic Syndromes,MDS)單核細(xì)胞中,CD69的表達(dá)量明顯增加,這可能與MDS患者免疫功能失調(diào)有關(guān)。CD69的高表達(dá)可能會(huì)導(dǎo)致單核細(xì)胞對(duì)病原體的清除能力下降,從而使MDS患者更容易感染。

3.2 CD69和自身免疫相關(guān)性疾病

對(duì)于CD69的研究大都集中在系統(tǒng)性紅斑狼瘡、類風(fēng)濕性關(guān)節(jié)炎等自身免疫性疾病上。這些研究發(fā)現(xiàn)CD69在自身免疫性疾病患者外周血中處于高表達(dá)狀態(tài),經(jīng)有效治療后,CD69表達(dá)水平明顯回落,且CD69水平與疾病的活動(dòng)明顯相關(guān)。

系統(tǒng)性紅斑狼瘡(Systemic Lupus Erythematosus,SLE)是以T、B淋巴細(xì)胞功能改變?yōu)樘卣鞯淖陨砻庖咝约膊?。在刺激?shí)驗(yàn)中,SLE患者的淋巴細(xì)胞CD69表達(dá)比正常人群細(xì)胞呈高反應(yīng),且SLE病人淋巴細(xì)胞對(duì)多種刺激表現(xiàn)適度的增殖。然而,SLE患者CD4+和CD8+T細(xì)胞,CD69的表達(dá)無(wú)明顯差異,提示CD4+和CD8+T細(xì)胞的活化,均需CD69的參與,CD69所起的作用很可能是在活化早期傳遞活化信號(hào) [22]。

在類風(fēng)濕性關(guān)節(jié)炎(Rheumatoid Arthritis,RA)滑膜液中,CD4+和CD8+T淋巴細(xì)胞CD69的表達(dá)均升高,表明這兩個(gè)T細(xì)胞亞群均被激活。對(duì)比RA、血清陰性脊柱關(guān)節(jié)病(SSd)和結(jié)晶體關(guān)節(jié)炎(CAA)三組患者在關(guān)節(jié)滑膜液中CD69的表達(dá),發(fā)現(xiàn)CD69+淋巴細(xì)胞的百分比在三組患者中沒(méi)有差異,但是RA患者關(guān)節(jié)滑膜液中CD69表達(dá)水平最高。此外,RA組患者的淋巴細(xì)胞CD69表達(dá)與滑膜液IL-15水平相關(guān) [23-24]。

在自身免疫性心肌炎的小鼠中,CD69能通過(guò)調(diào)節(jié)心臟特異的Th17細(xì)胞來(lái)負(fù)性調(diào)節(jié)心肌炎癥。Th17細(xì)胞是一種免疫細(xì)胞,其參與了多種炎癥性疾病的發(fā)生和發(fā)展過(guò)程,包括心肌炎。在體內(nèi)CD69能通過(guò)活化Jak3/Stat5通路調(diào)節(jié)T細(xì)胞向Th17細(xì)胞分化 [25]。

CD69調(diào)節(jié)T細(xì)胞向Th17細(xì)胞分化

圖4. CD69調(diào)節(jié)T細(xì)胞向Th17細(xì)胞分化 [28]

3.3 CD69和其它疾病

有研究表明冠心?。–oronary Heart Disease,CHD)患者的CD69、DKK-1IL-10IL-6、TC、TG、LDL高表達(dá),并且隨著冠脈狹窄病變程度加重 [26-27]。早期研究還揭示,哮喘患者氣道中T細(xì)胞有CD69表達(dá),在細(xì)胞激活后,CD69通過(guò)對(duì)TGF-β生成與分泌的調(diào)節(jié)來(lái)激發(fā)T細(xì)胞的凋亡 [28]。CD69誘導(dǎo)活化細(xì)胞凋亡功能為哮喘治療提供新思路。另有學(xué)者在實(shí)體瘤(胃癌、肝癌、大腸癌等)的研究中發(fā)現(xiàn),患者外周血CD69表達(dá)水平明顯減低,并與腫瘤分期呈負(fù)相關(guān),手術(shù)切除病灶或化療后,CD69表達(dá)水平則有所回升 [29-31]。


4. 靶向CD69的研發(fā)藥物及臨床意義

最新的Pharmsnap數(shù)據(jù)顯示,GeneFrontier Corp.正在臨床前模型中驗(yàn)證一款針對(duì)CD69的單克隆抗體藥物(GFC-101),可用于治療腸易激綜合征、類風(fēng)濕關(guān)節(jié)炎以及呼吸障礙。作為細(xì)胞最早表達(dá)的激活蛋白,CD69可以引發(fā)一系列免疫反應(yīng)。目前,更多干預(yù)CD69表達(dá)水平的藥物或抗體正在進(jìn)一步研究中,例如,在治療CLL患者時(shí),高表達(dá)CD69的瘤細(xì)胞不太容易受到苯達(dá)莫司汀(Bendamustine)的影響,相比之下,外周血細(xì)胞則更容易受到影響。預(yù)先使用B細(xì)胞受體抑制劑降低CD69水平可能有助于減少苯達(dá)莫司汀低應(yīng)答病例的發(fā)生 [32]。

此外,CD69的配體及生物功能等目前仍未探清。近期的研究表明,Gla-1可能是CD69的一種配體,與CD69分子胞外結(jié)構(gòu)結(jié)合。這種Gla-1-CD69配受體結(jié)合方式代表了一條新的通路,可控制Th17介導(dǎo)的炎癥和炎癥帶相關(guān)組織損傷 [8]。最新研究發(fā)現(xiàn)CD69還可通過(guò)與S1PR1結(jié)合,激活S1PR1并導(dǎo)致其內(nèi)化,在淋巴細(xì)胞活動(dòng)中發(fā)揮重要的調(diào)節(jié)作用 [33]。隨著對(duì)CD69研究的深入,我們將獲得更多關(guān)于CD69的生物學(xué)功能和臨床應(yīng)用方面的重要信息。未來(lái),在血液病和自身免疫疾病治療中,有望開(kāi)發(fā)以CD69為靶點(diǎn)的新型免疫治療方法。

為鼎力協(xié)助各藥企針對(duì)CD69在血液和免疫等疾病在臨床中的研究,CUSABIO推出CD69活性蛋白產(chǎn)品(CSB-MP004952HU;CSB-EP004952HU-B),助力您在CD69機(jī)制方面的研究或其潛在臨床價(jià)值的探索(點(diǎn)擊查看CD69系列產(chǎn)品:CD69蛋白; CD69抗體)。

CD69 蛋白:

Recombinant Human Early activation antigen CD69(CD69),partial (Active)

Recombinant Human Early activation antigen CD69(Cd69),partial,Biotinylated

High Purity Validated
by SDS-PAGE

The purity was greater than 96.7% as determined by SDS-PAGE. (Tris-Glycine gel) Discontinuous SDS-PAGE (reduced) with 5% enrichment gel and 15% separation gel.

Excellent Bioactivity Validated by Functional ELISA

Immobilized Human CD69 at 2μg/mL can bind Anti-CD69 recombinant antibody (CSB-RA004952MA1HU), the EC50 is 23.17-26.04 ng/mL

High Purity Validated
by SDS-PAGE

The purity was greater than 90% as determined by SDS-PAGE. (Tris-Glycine gel) Discontinuous SDS-PAGE (reduced) with 5% enrichment gel and 15% separation gel.

CD69 穩(wěn)轉(zhuǎn)細(xì)胞株:


參考文獻(xiàn):

[1] Yu, Lei, et al. "HSF1 promotes CD69+ Treg differentiation to inhibit colitis progression." Theranostics 13.6 (2023): 1892.

[2] Dohnálek, Jan, and Tereza Skálová. "C-type lectin-(like) fold–Protein-protein interaction patterns and utilization." Biotechnology Advances 58 (2022): 107944.

[3] Koyama-Nasu, Ryo, et al. "The cellular and molecular basis of CD69 function in anti-tumor immunity." International Immunology 34.11 (2022): 555-561.

[4] Vandeveer, George H., et al. "Discovery of structural diverse reversible BTK inhibitors utilized to develop a novel in vivo CD69 and CD86 PK/PD mouse model." Bioorganic & Medicinal Chemistry Letters 80 (2023): 129108.

[5] Lauzurica, Pilar, et al. "Phenotypic and functional characteristics of hematopoietic cell lineages in CD69-deficient mice." Blood, The Journal of the American Society of Hematology 95.7 (2000): 2312-2320.

[6] Chen, Chun-Kai, et al. "Increased expressions of CD69 and HLA-DR but not of CD25 or CD71 on endometrial T lymphocytes of nonpregnant women." Human immunology 42.3 (1995): 227-232.

[7] Peggs, Karl S., et al. "Immunotherapy with CD25/CD71-allodepleted T cells to improve T-cell reconstitution after matched unrelated donor hematopoietic stem cell transplant: a randomized trial." Cytotherapy 25.1 (2023): 82-93.

[8] Cibrián, Danay, and Francisco Sánchez‐Madrid. "CD69: from activation marker to metabolic gatekeeper." European journal of immunology 47.6 (2017): 946-953.

[9] Agaugué, Sophie, et al. "Human natural killer cells exposed to IL-2, IL-12, IL-18, or IL-4 differently modulate priming of naive T cells by monocyte-derived dendritic cells." Blood, The Journal of the American Society of Hematology 112.5 (2008): 1776-1783.

[10] Matic, J., Deeg, J., Scheffold, A., Goldstein, I., & Spatz, J. P. (2013). Fine tuning and efficient T cell activation with stimulatory aCD3 nanoarrays. Nano letters, 13(11), 5090–5097.

[11] Tian, Yunfei, et al. "Development of a Monoclonal Antibody to Pig CD69 Reveals Early Activation of T Cells in Pig after PRRSV and ASFV Infection." Viruses 14.6 (2022): 1343.

[12] Borrego, F., et al. "CD69 is a stimulatory receptor for natural killer cell and its cytotoxic effect is blocked by CD94 inhibitory receptor." Immunology 97.1 (1999): 159.

[13] Zingoni, Alessandra, et al. "CD69‐triggered ERK activation and functions are negatively regulated by CD94/NKG2‐A inhibitory receptor." European journal of immunology 30.2 (2000): 644-651.

[14] Ishizaki, Shunsuke, et al. "Role of CD69 in acute lung injury." Life sciences 90.17-18 (2012): 657-665.

[15] Lamana, Amalia, et al. "CD69 modulates sphingosine-1-phosphate-induced migration of skin dendritic cells." Journal of Investigative Dermatology 131.7 (2011): 1503-1512.

[16] Ram??rez, Rafael, et al. "CD69-induced monocyte apoptosis involves multiple nonredundant signaling pathways." Cellular immunology 172.2 (1996): 192-199.

[17] Aouad, Salah M., et al. "Caspase-3 is a component of Fas death-inducing signaling complex in lipid rafts and its activity is required for complete caspase-8 activation during Fas-mediated cell death." The Journal of Immunology 172.4 (2004): 2316-2323.

[18] Deng, Caishu, Elzbieta Goluszko, and Premkumar Christadoss. "Fas/Fas ligand pathway, apoptosis, and clonal anergy involved in systemic acetylcholine receptor T cell epitope tolerance." The Journal of Immunology 166.5 (2001): 3458-3467.

[19] Qiu, Guo, Xi Xu, and Qifa Liu. "CD69 Marks Leukemic Regenerating Cells and Regulates Their Metabolism in AML." Blood 140.Supplement 1 (2022): 8780-8782.

[20] Del Poeta, Giovanni, et al. "CD69 is independently prognostic in chronic lymphocytic leukemia: a comprehensive clinical and biological profiling study." Haematologica 97.2 (2012): 279-287.

[21] Davison, Glenda M., Nicolas Novitzky, and Rygana Abdulla. "Monocyte derived dendritic cells have reduced expression of co-stimulatory molecules but are able to stimulate autologous T-cells in patients with MDS." Hematology/oncology and stem cell therapy 6.2 (2013): 49-57.

[22] Portales-Perez, D., et al. "Abnormalities in CD69 expression, cytosolic pH and Ca2+ during activation of lymphocytes from patients with systemic lupus erythematosus." Lupus 6.1 (1997): 48-56.

[23] Atzeni, Fabiola, et al. "CD69 expression on neutrophils from patients with rheumatoid arthritis." Clinical and experimental rheumatology 22.3 (2004): 331-334.

[24] Afeltra, A., et al. "Expression of CD69 antigen on synovial fluid T cells in patients with rheumatoid arthritis and other chronic synovitis." Annals of the rheumatic diseases 52.6 (1993): 457-460.

[25] Martín, Pilar, et al. "CD69 association with Jak3/Stat5 proteins regulates Th17 cell differentiation." Molecular and cellular biology 30.20 (2010): 4877-4889.

[26] Ivanovska, Nina, and Petya Dimitrova. "Bone resorption and remodeling in murine collagenase-induced osteoarthritis after administration of glucosamine." Arthritis research & therapy 13.2 (2011): 1-13.

[27] Peng, Jianqiao, and Yi Xiang. "Value analysis of CD69 combined with EGR1 in the diagnosis of coronary heart disease." Experimental and Therapeutic Medicine 17.3 (2019): 2047-2052.

[28] Martín, Pilar, et al. "The leukocyte activation antigen CD69 limits allergic asthma and skin contact hypersensitivity." Journal of Allergy and Clinical Immunology 126.2 (2010): 355-365.

[29] Cai, Yang, Wei Zhu, and Guanghua Feng. "Alteration of CD69 and HLA-DR-positive T Cells in Patients with Gastric Cancer after Operations and its Clinical Significances." Journal of Medical Research (2006).

[30] Bruni, Elena, et al. "Intrahepatic CD69+ Vδ1 T cells re-circulate in the blood of patients with metastatic colorectal cancer and limit tumor progression." Journal for Immunotherapy of Cancer 10.7 (2022).

[31] Tang, Kaihua, et al. "CD69 serves as a potential diagnostic and prognostic biomarker for hepatocellular carcinoma." Scientific Reports 13.1 (2023): 7452.

[32] Montraveta, Arnau, et al. "CD69 expression potentially predicts response to bendamustine and its modulation by ibrutinib or idelalisib enhances cytotoxic effect in chronic lymphocytic leukemia." Oncotarget, 2015, vol. 7, num. 5, p. 5507-5520 (2015).

[33] Chen, Hongwen, et al. "Transmembrane protein CD69 acts as an S1PR1 agonist." Elife 12 (2023): e88204.